# ECC based Mutual Authentication Scheme for RFID

Parshuram Budhathoki Cameron University

# Торіс

- RFID
- Mutual Authentication
- Elliptic Curve Cryptography
- One Example
- Implementation
- Ongoing Work



"friend or foe" Identification system used in World war II on aircraft





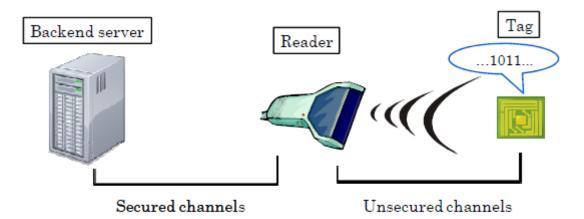
#### **RFID** Tag



#### **RFID** Reader













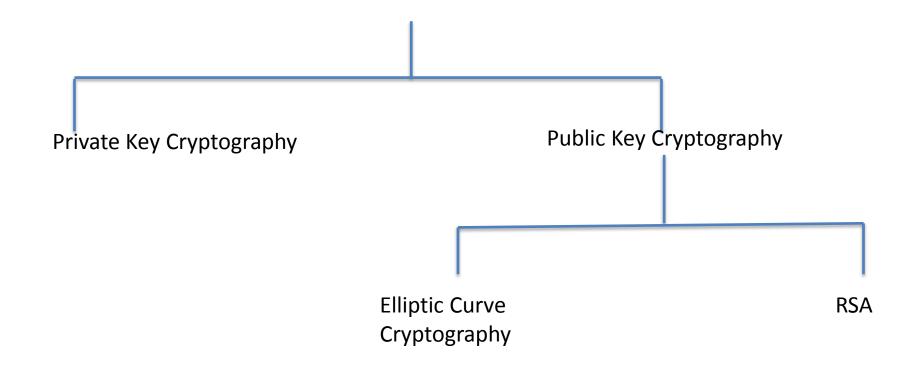

## **Mutual Authentication**



# Cryptography

Private Key Cryptography

Public Key Cryptography










# Cryptography



# Elliptic Curve Cryptography

In 1985, Victor Miller and Neal Koblitz independently proposed public key cryptography based on the group structure of elliptic curves over finite fields.

Elliptic Curve Cryptography

| ECC Key Size | RSA Key Size | Key Size Ratio |  |  |
|--------------|--------------|----------------|--|--|
| 163          | 1024         | 1:6            |  |  |
| 256          | 3072         | 1:12           |  |  |
| 384          | 7680         | 1:20           |  |  |
| 512          | 15360        | 1:30           |  |  |

# One Example

- $\mathbb{G}$  An additive group of prime order q on an elliptic curve
- P A generator of  $\mathbb{G}$
- $X_i$  The identifier of *i*th tag which is a random point in  $\mathbb{G}$
- *y* The private key of the server
- Y The public key of the server which is Y = yP
- h A one-way hash function

#### One Example

| Tag <sub>i</sub> { $X_i$ , $Y$ , $P$ } |                     | Server $\{y, Y = yP, P\}$                                                                                             |
|----------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                        |                     | _                                                                                                                     |
|                                        |                     | $r \in \mathbb{Z}_q$                                                                                                  |
|                                        |                     | $C_0 = rY$                                                                                                            |
|                                        |                     |                                                                                                                       |
|                                        | $\{C_0\}$           |                                                                                                                       |
|                                        |                     |                                                                                                                       |
| $k \in \mathbb{Z}_q$                   |                     |                                                                                                                       |
| K = kP                                 |                     |                                                                                                                       |
| $C_1 = kC_0$                           |                     |                                                                                                                       |
| R = K + K                              |                     |                                                                                                                       |
| $C_2 = X_i + R$                        |                     |                                                                                                                       |
| $C_3 = h(X_i, K)$                      |                     |                                                                                                                       |
|                                        |                     |                                                                                                                       |
|                                        | $\{C_1, C_2, C_3\}$ |                                                                                                                       |
|                                        |                     |                                                                                                                       |
|                                        |                     | $K' = y^{-1}r^{-1}C_1$                                                                                                |
|                                        |                     | $\begin{aligned} \mathbf{K} &= \mathbf{y} - \mathbf{C}_1 \\ \mathbf{X}' &= \mathbf{C}_2 - 2\mathbf{K}' \end{aligned}$ |
|                                        |                     | $\begin{aligned} x' &= C_2 - 2K \\ h(X', K')? &= C_3 \end{aligned}$                                                   |
|                                        |                     |                                                                                                                       |
|                                        |                     | $C_4 = h(X_i, 3K')$                                                                                                   |
|                                        | (-)                 |                                                                                                                       |
|                                        | $\{C_4\}$           |                                                                                                                       |
|                                        |                     |                                                                                                                       |
| R = R + K = 3K                         |                     |                                                                                                                       |
| $h(X_i, R)? = C_4$                     |                     |                                                                                                                       |
|                                        |                     |                                                                                                                       |

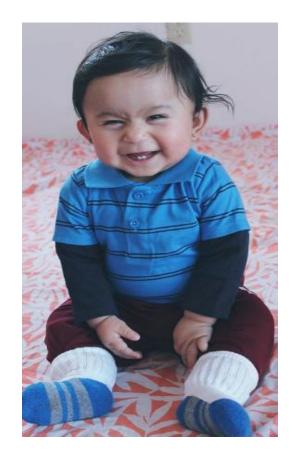
# Implementation

- Scalar Multiplication
- Hash Functions
- Addition

# Implementation

|                          | Tuyls<br>(Tag, Server) | Batina<br>(Tag, Server) | Lee<br>(Tag, Server) | Chou<br>(Tag, Server) | Farash<br>(Tag, Server) | Ours<br>(Tag, Server) |
|--------------------------|------------------------|-------------------------|----------------------|-----------------------|-------------------------|-----------------------|
| Hash                     | (0, 0)                 | (0,0)                   | (0,0)                | (2, 2)                | (2, 2)                  | (3, 3)                |
| Scalar<br>Multiplication | (1, 2)                 | (2, 4)                  | (3,3)                | (2, 2)                | (2, 3)                  | (0, 4)                |

# On Going Work


Randomness

• Security Proof

• Implementation

# Reference

- 1. J.S. Chou et al "An efficient RFID mutual authentication scheme based on ECC"
- 2. L. Batina et al "RFID-tags for Anti-Counterfeiting"
- 3. P. Tuyls et al "Public-Key Cryptography for RFID tags"
- 4. Y.K. Lee et al "Anti-counterfeiting Untraceability and Other Security Challenges for RFID Systems-Public-Key-Based Protocols and Hardware"
- 5. M.S. Farash "Cryptanalysis and improvement of an efficient mutual authentication RFID scheme based on elliptic curve cryptography"
- 6. Chin-I Lee et al "An Elliptic Curve Cryptography-Based RFID Authentication Securing E-Health System"
- 7. Md. Endadul Hoque, Protecting Privacy and Ensuring Security of RFID Systems Using Private Authentication Protocols
- 8. Picture Source: Internet



# Thank you!